Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(17): 12192-12203, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38628475

ABSTRACT

Rice husk (RH) is a common agricultural waste generated during the rice milling process; however, a major portion is either burned or disposed of in landfills, posing significant environmental risks. In this study, RH waste was transformed into bio-based catalysts via delignification cum in situ growth of MoS2 (DRH-MoS2) for efficient pollutant dye removal and microbial decontamination. The developed DRH-MoS2 exhibits nanoflower-like structures with a 2H-MoS2 phase and a narrow band gap of 1.37 eV, which showed strong evidence of photocatalytic activity. With the presence of abundant hydroxyl functionality, delignified rice husk (DRH) exhibits a malachite green (MG) dye adsorption capacity of 88 mg g-1. However, in situ growth of MoS2 nanosheets on DRH enhances MG degradation to 181 mg g-1 under dark conditions and 550 mg g-1 in the presence of light. Mechanistic insights reveal a synergistic adsorption-cum-degradation phenomenon, amplified by generation of reactive oxygen species during photodegradation which was confirmed from radical scavenging activity. Interestingly, DRH-MoS2 demonstrates potent antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with sustained photodegradation efficiency (>80%) over three cycles. The present work reports a cost-effective and scalable strategy for environmental remediation of real wastewater which usually contains both dye pollutants as well as microbes using abundantly available renewable resources such as sunlight and agricultural biomass wastes.

2.
iScience ; 27(5): 109630, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38628968

ABSTRACT

Generation of voluminous single-use plastic waste and byproducts from agricultural harvests such as rice straws (RSs) are major global challenges due to their disposal issues, contributing to greenhouse gas emissions, and affecting the ecological system with threats to human health. A scalable, low-cost, and eco-friendly strategy for fabricating cellulose-silica-based drinking straws, free from microplastics and adhesive, through strategic valorization of RS is reported. Functionalization by delignification-cum-crosslinking of RS leads to development of straws with high water stability (∼5 days), solvothermal stability (0°C-95°C), tensile strength (128 MPa), low migration values (<60 mg/kg), improved biodegradability (∼126 days) with reduced wettability and hydrophobicity. RS drinking straws show antibacterial, self-cleaning, self-healing, anti-fizzing, reusable, and generate significantly lower carbon footprint (<99.8% and <53.34% global warming potential than metal and polylactic acid straws). Repurposing of agro-wastes from farms to commercially viable drinking straws which biodegrades after its consumption achieves the goal of circular economy and sustainable development.

3.
Int J Biol Macromol ; 264(Pt 2): 130577, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453115

ABSTRACT

In the present work, phosphorylated cellulose (PC) gel has been produced following an environmentally benign approach using agro-based chemicals with improved yield. The PC gels produced were transparent, negatively charged with high consistency, charge content (1133.33 mmol/kg), degree of substitution (DS) of 0.183 and increased yield (>87 %). The XPS and EDS analysis confirms the covalently bonded phosphate groups at weight percent of 9.42 % and 11.01 %, respectively. The life cycle assessment (LCA) shows that PC gel production via the phosphorylation route is an ecologically favourable strategy compared with traditional TEMPO oxidation, resulting in 1.67 times lower CO2 emission. The rheological studies of PC gels show shear-thinning behaviour with improved 3D printability followed by heat-induced crosslinking of phosphate groups. The mechanistic insights for the condensation of phosphate to form a phosphoric ester group during cross-linking were evaluated through 31P solid-state NMR and XPS studies. Interestingly, the 3D-printed structures showed high structural stability under both compression and tensile load in both dry and wet conditions, with high water absorption (5408.33 %) and swelling capacity of 700 %. The structures show improved methylene blue (MB) remediation capabilities with a maximum removal efficiency of 99 % for 10-200 mg/L and more than seven times reusability. This work provides a green, facile and energy-efficient strategy for fabricating PCs with easy processability through additive manufacturing techniques for producing value-added products, opening up new avenues for high-performance applications.


Subject(s)
Bioprinting , Cellulose , Cellulose/chemistry , Bioprinting/methods , Printing, Three-Dimensional , Gels , Phosphates , Tissue Scaffolds/chemistry , Tissue Engineering/methods
4.
Environ Sci Pollut Res Int ; 31(11): 17494-17510, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342834

ABSTRACT

In this study, sugarcane bagasse (SB) was strategically subjected to a delignification process followed by the in situ growth of multi-layered molybdenum disulfide (MoS2) nanosheets with hexagonal phase (2H-phase) crystal structure via hydrothermal treatment. The MoS2 nanosheets underwent self-assembly to form nanoflower-like structures in the aligned cellulose inter-channels of delignified sugarcane bagasse (DSB), the mechanism of which was understood through FTIR and XPS spectroscopic studies. DSB, due to its porous morphology and abundant hydroxyl groups, shows remediation capabilities of methylene blue (MB) dye through physio-sorption but shows a low adsorption capacity of 80.21 mg/g. To improve the removal capacity, DSB after in situ growth of MoS2 (DSB-MoS2) shows enhanced dye degradation to 114.3 mg/g (in the dark) which further improved to 158.74 mg/g during photodegradation, due to catalytically active MoS2. Interestingly, DSB-MoS2 was capable of continuous dye degradation with recyclability for three cycles, reaching an efficiency of > 83%, along with a strong antibacterial response against Gram-positive Staphylococcus aureus (S.aureus) and Gram-negative Escherichia coli (E. coli). The present study introduces a unique strategy for the up-conversion of agricultural biomass into value-added bio-adsorbents, which can effectively and economically address the remediation of dyes with simultaneous microbial decontamination from polluted wastewater streams.


Subject(s)
Environmental Pollutants , Saccharum , Molybdenum/chemistry , Cellulose/chemistry , Escherichia coli , Decontamination , Saccharum/chemistry , Coloring Agents
5.
Chembiochem ; 25(2): e202300652, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37921481

ABSTRACT

The increase in antibacterial drug resistance is threatening global health conditions. Recently, antibacterial photodynamic therapy (aPDT) has emerged as an effective antibacterial treatment with high cure gain. In this work, three Zn(II) complexes viz., [Zn(en)(acac)Cl] (1), [Zn(bpy)(acac)Cl] (2), [Zn(en)(cur)Cl] (3), where en=ethylenediamine (1 and 3), bpy=2,2'-bipyridine (2), acac=acetylacetonate (1 and 2), cur=curcumin monoanionic (3) were developed as aPDT agents. Complexes 1-3 were synthesized and fully characterized using NMR, HRMS, FTIR, UV-Vis. and fluorescence spectroscopy. The HOMO-LUMO energy gap (Eg), and adiabatic splittings (ΔS1-T1 and ΔS0-T1 ) obtained from DFT calculation indicated the photosensivity of the complexes. These complexes have not shown any potent antibacterial activity under dark conditions but the antibacterial activity of these complexes was significantly enhanced upon light exposure (MIC value up to 0.025 µg/mL) due to their light-mediated 1 O2 generation abilities. The molecular docking study suggested that complexes 1-3 interact efficiently with DNA gyrase B (PDB ID: 4uro). Importantly, 1-3 did not show any toxicity toward normal HEK-293 cells. Overall, in this work, we have demonstrated the promising potential of Zn(II) complexes as effective antibacterial agents under the influence of visible light.


Subject(s)
Coordination Complexes , Curcumin , Photochemotherapy , Humans , Curcumin/pharmacology , Molecular Docking Simulation , Coordination Complexes/chemistry , Density Functional Theory , HEK293 Cells , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Zinc/chemistry
6.
Dalton Trans ; 52(46): 17562-17572, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37965840

ABSTRACT

Herein, five novel polypyridyl-based Co(III) complexes of Schiff bases, viz., [Co(dpa)(L1)]Cl (1), [Co(dpa)(L2)]Cl (2), [Co(L3)(L2)]Cl (3), [Co(L3)(L1)]Cl (4), and [Co(L4)(L1)]Cl (5), where dpa (dipicolylamine) = bis(2-pyridylmethyl)amine; H2L1 = (E)-2-((2-hydroxybenzylidene)amino)phenol; H2L2 = (E)-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylpyridin-3-ol; L3 = 4'-phenyl-2,2':6',2''-terpyridine (ph-tpy); and L4 = 4'-ferrocenyl-2,2':6',2''-terpyridine (Fc-tpy), were synthesized and characterized. Complexes 1, 3, and 4 were structurally characterized by single-crystal XRD, indicating an octahedral CoIIIN4O2 coordination core. The absorption bands of these complexes were observed in the visible range with a λmax at ∼430-485 nm. Complex 5 displayed an extra absorption band near 545 nm because of a ferrocene moiety. These absorptions in the visible region reflect the potential of the complexes to act as visible-light antimicrobial photodynamic therapy (aPDT) agents. All of these complexes showed reactive oxygen species (ROS)-mediated antibacterial effects against S. aureus (Gram-positive) and E. coli (Gram-negative bacteria) upon low-energy visible light (0.5 J cm-2, 400-700 nm) exposure. Additionally, 1-5 did not show any toxicity toward A549 (Human Lung adenocarcinoma) cells, reflecting their selective bacteria-killing abilities.


Subject(s)
Coordination Complexes , Vitamin B 6 , Humans , Pyridines/pharmacology , Pyridines/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemistry , Staphylococcus aureus , Escherichia coli , Anti-Bacterial Agents/pharmacology , Vitamins , Coordination Complexes/pharmacology , Coordination Complexes/chemistry
7.
J Mater Chem B ; 11(34): 8142-8158, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37431285

ABSTRACT

Protein-based biomaterials, particularly amyloids, have sparked considerable scientific interest in recent years due to their exceptional mechanical strength, excellent biocompatibility and bioactivity. In this work, we have synthesized a novel amyloid-based composite hydrogel consisting of bovine serum albumin (BSA) and aloe vera (AV) gel to utilize the medicinal properties of the AV gel and circumvent its mechanical frangibility. The synthesized composite hydrogel demonstrated an excellent porous structure, self-fluorescence, non-toxicity, and controlled rheological properties. Moreover, this hydrogel possesses inherent antioxidant and antibacterial properties, which accelerate the rapid healing of wounds. The in vitro wound healing capabilities of the synthesized composite hydrogel were evaluated using 3T3 fibroblast cells. Moreover, the efficacy of the hydrogel in accelerating chronic wound healing via collagen crosslinking was investigated through in vivo experiments using a diabetic mouse skin model. The findings indicate that the composite hydrogel, when applied, promotes wound healing by inducing collagen deposition and upregulating the expression of vascular endothelial growth factor (VEGF) and its receptors. We also demonstrate the feasibility of the 3D printing of the BSA-AV hydrogel, which can be tailored to treat various types of wound. The 3D printed hydrogel exhibits excellent shape fidelity and mechanical properties that can be utilized for personalized treatment and rapid chronic wound healing. Taken together, the BSA-AV hydrogel has great potential as a bio-ink in tissue engineering as a dermal substitute for customizable skin regeneration.


Subject(s)
Aloe , Diabetes Mellitus , Mice , Animals , Hydrogels/pharmacology , Hydrogels/chemistry , Aloe/chemistry , Aloe/metabolism , Serum Albumin, Bovine , Vascular Endothelial Growth Factor A/metabolism , Wound Healing , Collagen
8.
Chembiochem ; 24(10): e202300033, 2023 05 16.
Article in English | MEDLINE | ID: mdl-36763497

ABSTRACT

Four new CoII complexes, [Co(bpy)2 (acac)]Cl (1), [Co(phen)2 (acac)]Cl (2), [Co(bpy)2 (cur)]Cl (3), [Co(phen)2 (cur)]Cl (4), where bpy=2,2'-bipyridine (1 and 3), phen=1,10-phenanthroline (2 and 4), acac=acetylacetonate (1 and 2), cur=curcumin monoanion (3 and 4) have been designed, synthesized and fully characterized. The X-ray crystal structures of 1 and 2 indicated that the CoN4 O2 core has a distorted octahedral geometry. The photoactivity of these complexes was tuned by varying the π conjugation in the ligands. Curcumin complexes 3 and 4 had an intense absorption band near 435 nm, which made them useful as visible-light photodynamic therapy agents; they also showed fluorescence with λem ≈565 nm. This fluorescence was useful for studying their intracellular uptake and localization in MCF-7 breast cancer cells. The acetylacetonate complexes (1 and 2) were used as control complexes to understand the role of curcumin. The white-light-triggered anticancer profiles of the cytosol targeting complexes 3 and 4 were investigated in detail. These non-dark toxic complexes displayed significant apoptotic photo-cytotoxicity (under visible light) against MCF-7 cells through ROS generation. The control complexes 1 and 2 did not induce significant cell death in the light or dark. Interestingly, 1-4 produced a remarkable antibacterial response upon light exposure. Overall, the reported results here can increase the boundary of the CoII -based anticancer and antibacterial drug development.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Curcumin , Photochemotherapy , Humans , Curcumin/pharmacology , Curcumin/chemistry , Hydroxybutyrates , Pentanones , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Anti-Bacterial Agents/pharmacology
9.
Sci Total Environ ; 846: 157301, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35839879

ABSTRACT

Transparent wood, a sustainable material, holds the potential to replace conventional petroleum-based polymers because of its renewable and biodegradable properties. It has been recently used for construction, energy storage, flexible electronics, and packaging applications. Life cycle analysis (LCA) of transparent wood would provide the environmental impacts during its production and end-of-life (EOL). The cradle-to-gate analysis of transparent wood suggests that sodium hydroxide, sodium sulfite, hydrogen peroxide-based delignification (NaOH + Na2SO3 + H2O2 method), and epoxy infiltration lead to the lowest environmental impacts. It generates approximately 24 % less global warming potential and about 15 % less terrestrial acidification than sodium chlorite delignification and polymethyl methacrylate (PMMA) infiltration. The modelled industrial-scale production has lower electricity consumption (by 98.8 %) and environmental impacts than the laboratory scale (28 % less global warming potential and approximately 97 % less human toxicity). The EOL analysis of transparent wood showed reduced ecological impacts (107 times) in comparison to polyethylene, suggesting that it can be commercially adapted to replace conventional petroleum-based materials.


Subject(s)
Petroleum , Wood , Animals , Global Warming , Humans , Hydrogen Peroxide , Life Cycle Stages
10.
Nanotechnology ; 33(36)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35576914

ABSTRACT

Cellulose is one of the most abundant renewable biopolymer in nature and is present as major constituent in both plant cell walls as well as synthesized by some microorganisms as extracellular products. In both the systems, cellulose self-assembles into a hierarchical ordered architecture to form micro to nano-fibrillated structures, on basis of which it is classified into various forms. Nanocellulose (NCs) exist as rod-shaped highly crystalline cellulose nanocrystals to high aspect ratio cellulose nanofibers, micro-fibrillated cellulose and bacterial cellulose (BC), depending upon the origin, structural and morphological properties. Moreover, NCs have been processed into diversified products ranging from composite films, coatings, hydrogels, aerogels, xerogels, organogels, rheological modifiers, optically active birefringent colored films using traditional-to-advanced manufacturing techniques. With such versatility in structure-property, NCs have profound application in areas of healthcare, packaging, cosmetics, energy, food, electronics, bioremediation, and biomedicine with promising commercial potential. Herein this review, we highlight the recent advancements in synthesis, fabrication, processing of NCs, with strategic chemical modification routes to tailor its properties for targeted biomedical applications. We also study the basic mechanism and models for biosynthesis of cellulose in both plant and microbial systems and understand the structural insights of NC polymorphism. The kinetics study for both enzymatic/chemical modifications of NCs and microbial growth behavior of BC under various reactor configurations are studied. The challenges associated with the commercial aspects as well as industrial scale production of pristine and functionalized NCs to meet the growing demands of market are discussed and prospective strategies to mitigate them are described. Finally, post chemical modification evaluation of biological and inherent properties of NC are important to determine their efficacy for development of various products and technologies directed for biomedical applications.


Subject(s)
Biomedical Engineering , Nanofibers , Cellulose/chemistry , Hydrogels/chemistry , Nanofibers/chemistry , Prospective Studies
11.
J Colloid Interface Sci ; 587: 214-228, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33360894

ABSTRACT

Ion transfer phenomena occurring in nature are known to be most efficient. Many efforts have been made to mimic such phenomena, especially in the area of energy transfer. Proteins consisting of various amino acids are known to be the fundamental materials behind these phenomena. In the current study, an effort was made to extract proteinaceous material from human hair bio-waste by a green chemical-free thermal hydrolysis process. A simple heat treatment of the human hairs in presence of water led to the formation of a water soluble material, which was called hair hydrolysate (HH), contains 70 wt% proteinaceous material. It was utilized for the fabrication of poly(vinyl alcohol) (PVA) matrix-based anion exchange membrane (AEM). Presence of 27 wt% charged amino acids and 19 wt% polarizable amino acids in the HH provided effective charge transfer sites. 7 wt% arginine present in the HH, having continuous delocalized net positive charge helped the membrane to be stable in highly alkaline conditions, which was confirmed by an indirect analysis of alkaline stability. Formation of rod and flower shaped crystal morphology by the HH in glutaraldehyde crosslinked PVA matrix, created a continuous channel network at higher loadings, which provided a simple path for ion transfer, achieving OH- conductivity of 7.46 mS/cm at 70 °C. Swelling of the PVA matrix was minimized by annealing of the HH loaded sample, which resulted in reduction of ionic conductivity to 6.16 mS/cm (at 70 °C). At the same time, improvement in the properties like increase in thermal, mechanical and thermo-mechanical stability, reduction in water uptake, %swelling and methanol permeability was observed. The selectivity of the membrane was increased to almost a decimal place. Thus, the HH obtained from simple green thermal hydrolysis of human hair bio-waste is a cheap material, which is found to be suitable as ion conductive material for alkaline fuel cells.


Subject(s)
Polyvinyl Alcohol , Water , Anions , Electric Conductivity , Humans , Methanol
12.
Carbohydr Polym ; 252: 117114, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33183586

ABSTRACT

This work demonstrates a unique approach of utilizing alkali lignin (AL), as smart additive to in situ BC fermentation in which it concurrently acts as promoter to microbial growth as well as reinforcing filler for fabrication of multifunctional composites. Traditionally, BC fermentation is accompanied by inhibitor formation with sudden drop in pH leading to low yield and biomass growth. AL due to its antioxidant nature prevents formation of gluconic acid as byproduct, at ∼0.25 wt.% AL based on inhibitory byproduct kinetics. Interestingly, AL self-assembles to form primary and secondary structures in BC pores, resulting in simultaneous improvement in thermal stability as well as toughness. The BC/AL films show strong UV-blocking capacity with prolonged radical scavenging activity and preventing browning of freshly cut apples making it suitable as food packaging. Therefore, present work opens up new avenues for fabrication of high-performance BC-based composites through selection of smart materials which can simultaneously improve BC bioprocessing.

13.
Int J Biol Macromol ; 158: 1020-1036, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32353506

ABSTRACT

Inspired from biological motors, cellulose nanocrystals (CNCs) are strategically modified to induce self-propulsion behavior with the capabilities to catalytically degrade pollutants along with magnetic hyperthermia to clean arterial plaques during its course of propulsion. CNCs derived from renewable biomass, are decorated with catalytically active, magneto-responsive nanomaterials (Fe2O3/Pd nanoparticles) through sustainable routes. CNC nanomotors show improved propulsion at lowered peroxide concentrations with remotely controlled trajectory through chemo-magnetic field gradients and ideal surface-wettability characteristics, overcoming the requirement of surfactants, as with traditional nanomotors. We observed that nanomotors undergo motion through heterogeneous bubble propulsion mechanism, with capability to in situ degrade pollutants and generate local heat through hyperthermia, enhancing the rate of degradation process in real time. As proof of concept, we demonstrate that the dynamics of nanomotors can be controlled in a microfluidic channel through site-directed magnetic field and induction of pH gradient, mimicking the chemotaxis in cell-like environment and as swarm of nano-surgeons removes plaques from clogged arteries. Our study shows that strategic modification of CNCs results in fabrication of nanomotors with efficient propulsion system infused with multi-functional characteristics of high catalytic activity and magnetic hyperthermia which opens up new avenues for utilization of bio-based nanomotors derived from lignocellulose for myriad applications.

14.
ACS Appl Bio Mater ; 2(9): 4052-4066, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-35021339

ABSTRACT

The understanding of microbial growth dynamics during in situ fermentation and production of bacterial cellulose (BC) with impressive properties mimicking artificial nacre, suitable for commodity applications remains fundamentally challenging. Fabrication of BC/graphene films through a single step in situ fermentation with improved properties provides a sustainable replacement to the conventional chemical-based modification using toxic compounds. This work reports the effect of reduced graphene oxide (RGO) on in situ fermentation kinetics and demonstrates the formation of percolated-network in BC/RGO nanostructures. The evaluation of kinetic parameters shows that the specific growth rate reaches optimal values at 3 wt % RGO loadings, with mixed growth associated BC production behavior. The two-dimensional graphene sheets uniformly dispersed into a three-dimensional matrix of BC nanofibers via hydrogen-bonded interactions along with in situ reductions of RGO sheets, as confirmed from spectroscopic studies. This study also demonstrates the presence of percolated network-like structures between BC fibers and RGO platelets, which resulted in the formation of nanostructures with exceptional mechanical robustness and electrical conductivity. The physicochemical and structural properties of fabricated BC/RGO films were found to significantly depend upon the RGO compositions as well as fermentation conditions. We envision that the proposed ecofriendly and scalable technology for the formation of BC/RGO films with excellent inherent properties and performance will attract great interest for its prospective applications in flexible electronics.

15.
Sci Rep ; 8(1): 3886, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29497075

ABSTRACT

Graphene nanoscrolls (GNS), due to their remarkably interesting properties, have attracted significant interest with applications in various engineering sectors. However, uncontrolled morphologies, poor yield and low quality GNS produced through traditional routes are major challenges associated. We demonstrate sustainable approach of utilizing bio-derived cellulose nanocrystals (CNCs) as template for fabrication of GNS with tunable morphological dimensions ranging from micron-to-nanoscale(controlled length < 1 µm or >1 µm), alongwith encapsulation of catalytically active metallic-species in scroll interlayers. The surface-modified magnetic CNCs acts as structural-directing agents which provides enough momentum to initiate self-scrolling phenomenon of graphene through van der Waals forces and π-π interactions, mechanism of which is demonstrated through experimental and molecular simulation studies. The proposed approach of GNS fabrication provides flexibility to tune physico-chemical properties of GNS by simply varying interlayer spacing, scrolling density and fraction of encapsulated metallic nanoparticles. The hybrid GNS with confined palladium or platinum nanoparticles (at lower loading ~1 wt.%) shows enhanced hydrogen storage capacity (~0.2 wt.% at~20 bar and ~273 K) and excellent supercapacitance behavior (~223-357 F/g) for prolonged cycles (retention ~93.5-96.4% at ~10000 cycles). The current strategy of utilizing bio-based templates can be further extended to incorporate complex architectures or nanomaterials in GNS core or inter-layers, which will potentially broaden its applications in fabrication of high-performance devices.

16.
Int J Biol Macromol ; 106: 433-446, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28797817

ABSTRACT

This article addresses the elegant and green approach for fabrication of bio-based poly (lactic acid) (PLA)/cellulose nanocrystal (CNCs) bionanocomposite foam (PLA/CNC) with cellular morphology and hydrophobic surface behavior. Highly porous (porosity >80%) structure is obtained with interconnected pores and the effect of CNCs in the cell density (Nf) and cell size of foams are thoroughly investigated by morphological analysis. The thermo-mechanical investigations are performed for the foam samples and almost ∼1.7 and ∼2.2 fold increase in storage modulus is observed for the compressive and tensile mode respectively. PLA/CNC based bionanocomposite foams displayed similar thermal stability as base PLA foam. Detailed investigations of decomposition behavior are studied by using hyphenated thermogravimetric analysis-fourier transmission infrared spectroscopy (TGA-FTIR) system. Almost ∼13% increment is observed in crystallinity at highest loading of CNCs compared to neat counterpart. To investigate the splitting and spreading phenomenon of the wettability of the samples, linear model is used to find the Young's contact angle and contact angle hysteresis (CAH). Besides, ∼6.1 folds reduction in the density of PLA and the nanocomposite foams compared to PLA carries much significance in specialized application areas where weight is an important concern.


Subject(s)
Cellulose/chemistry , Nanocomposites/chemistry , Nanoparticles/chemistry , Polyesters/chemical synthesis , Biodegradation, Environmental , Elastic Modulus , Green Chemistry Technology , Hydrophobic and Hydrophilic Interactions , Nanocomposites/ultrastructure , Nanoparticles/ultrastructure , Polymerization , Porosity , Temperature , Wettability
17.
Int J Biol Macromol ; 104(Pt A): 827-836, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28648639

ABSTRACT

Cellulose nanocrystals (CNC) are fabricated from filter paper (as cellulosic source) by acid hydrolysis using different acids such as sulphuric (H2SO4), phosphoric (H3PO4), hydrochloric (HCl) and nitric (HNO3) acid. The resulting acid derived CNC are melt mixed with Polylactic acid (PLA) using extruder at 180°C. Thermogravimetric (TGA) result shows that increase in 10% and 50% weight loss (T10, T50) temperature for PLA-CNC film fabricated with HNO3, H3PO4 and HCl derived CNC have improved thermal stability in comparison to H2SO4-CNC. Nonisothermal kinetic studies are carried out with modified-Coats-Redfern (C-R), Ozawa-Flynn-Wall (OFW) and Kissinger method to predict the kinetic and thermodynamic parameters. Subsequently prediction of these parameter leads to the proposal of thermal induced degradation mechanism of nanocomposites using Criado method. The distribution of Ea calculated from OFW model are (PLA-H3PO4-CNC: 125-139 kJmol-1), (PLA-HNO3-CNC: 126-145 kJmol-1), (PLA-H2SO4-CNC: 102-123 kJmol-1) and (PLA-HCl-CNC: 140-182 kJmol-1). This difference among Ea for the decomposition of PLA-CNC bionanocomposite is probably due to various acids used in this study. The Ea calculated by these two methods are found in consonance with that observed from Kissinger method. Further, hyphenated TG-Fourier transform infrared spectroscopy (FTIR) result shows that gaseous products such as CO2, CO, lactide, aldehydes and other compounds are given off during the thermal degradation of PLA-CNC nanocomposite.


Subject(s)
Cellulose/chemistry , Nanocomposites/chemistry , Nanoparticles/chemistry , Polyesters/chemistry , Temperature , Kinetics
18.
ACS Omega ; 2(10): 7071-7084, 2017 Oct 31.
Article in English | MEDLINE | ID: mdl-30023538

ABSTRACT

This article reports a novel fabrication of branched cum cross-linked poly(lactic acid) (PLA) with nanosilk fibroin with graft chain topology by reactive extrusion process. It could be possible by the addition of a small amount of radical initiator (dicumyl peroxide (DCP)). Grafting of silk nanocrystals (SNCs) on PLA macromolecules that provides remarkable improvement in the rheological and thermal properties of the latter are confirmed by 1H NMR and Fourier transform infrared investigation. Significant improvement is observed in zero shear viscosities, and the crossover point shifts to lower frequencies as compared to the branched and cross-linked PLA system. Along with SNC grafting, the crystallization process is also enhanced and stable crystals appeared during cooling, which results in a single melting peak. The rate of crystallization of PLA has been improved although the percentage crystallinity reduces with DCP content, as higher grafting and cross-linking restricts the chain segmental motion, which is critical for crystallization process. Furthermore, SNC grafting increases the reprocessability performance of PLA and provides higher rheological properties as compared to the branched and cross-linked PLA at all reprocessing cycles.

19.
ACS Appl Mater Interfaces ; 8(28): 18393-409, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27331248

ABSTRACT

This paper reports a single-step co-precipitation method for the fabrication of magnetic cellulose nanocrystals (MGCNCs) with high iron oxide nanoparticle content (∼51 wt % loading) adsorbed onto cellulose nanocrystals (CNCs). X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Raman spectroscopic studies confirmed that the hydroxyl groups on the surface of CNCs (derived from the bamboo pulp) acted as anchor points for the adsorption of Fe3O4 nanoparticles. The fabricated MGCNCs have a high magnetic moment, which is utilized to orient the magnetoresponsive nanofillers in parallel or perpendicular orientations inside the polylactic acid (PLA) matrix. Magnetic-field-assisted directional alignment of MGCNCs led to the incorporation of anisotropic mechanical, thermal, and electrical properties in the fabricated PLA-MGCNC nanocomposites. Thermomechanical studies showed significant improvement in the elastic modulus and glass-transition temperature for the magnetically oriented samples. Differential scanning calorimetry (DSC) and XRD studies confirmed that the alignment of MGCNCs led to the improvement in the percentage crystallinity and, with the absence of the cold-crystallization phenomenon, finds a potential application in polymer processing in the presence of magnetic field. The tensile strength and percentage elongation for the parallel-oriented samples improved by ∼70 and 240%, respectively, and for perpendicular-oriented samples, by ∼58 and 172%, respectively, in comparison to the unoriented samples. Furthermore, its anisotropically induced electrical and magnetic properties are desirable for fabricating self-biased electronics products. We also demonstrate that the fabricated anisotropic PLA-MGCNC nanocomposites could be laminated into films with the incorporation of directionally tunable mechanical properties. Therefore, the current study provides a novel noninvasive approach of orienting nontoxic bioderived CNCs in the presence of low magnetic fields, with potential applications in the manufacturing of three-dimensional composites with microstructural features comparable to biological materials for high-performance engineering applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...